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A numerical technique is presented for locating the eigenvalues of two point linear 
differential eigenvalue problems. The technique is designed to search for complex 
eigenvalues belonging to complex operators. With this method, any domain of the 
complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. 
For an application of the method, the eigenvalues of the Orr-Sommerfeld equation 
of the plane Poiseuille flow are determined within a specified portion of the c-plane. 
The eigenvalues for OL = 1 and R = 10,000 are tabulated and compared for accuracy 
with existing solutions. 

In this paper a numerical method is outlined for locating the spectrum of 
complex eigenvalues belonging to a complex linear differential operator in a 
prescribed section of the complex eigenvalue plane. Full use is made here of the 
fundamental properties of the solution of linear differential operators, and hence, 
the shooting technique is employed in the numerical procedure. This method is 
presented in contrast to the finite difference techniques which were used almost 
exclusively in the past for locating the eigenvalues. In the finite difference procedure, 
the original differential eigenvalue problem is transformed to an algebraic one, 
and thus, the eigenvalues obtained are those belonging to the algebraic problem. 
However, the finite difference technique possesses two shortcomings. First, the 
number of eigenvalues sought and determined is directly proportional to the 
number of mesh points used in the differencing algorithm. Secondly, there does 
not exist an a priori control on the section of the complex eigenvalue plane to be 
searched. The present technique does allow the user to search any portion of the 
eigenvalue plane that he may wish, and certainly the number of eigenvalues to be 
determined in no way depends on the integration method. Also, it is worth men- 
tioning here that this technique may be used for the location of the real spectrum 
of eigenvalues belonging to a real operator. 
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Complex eigenvalues belonging to complex differential operators arise in the 
theory of hydrodynamic stability; therefore, the problem of the stability of the 
plane Poiseuille flow to infinitesimal disturbances is discussed and the pertinent 
results are presented as an illustration of the method. Most of the accurate tech- 
niques for solving such an eigenvalue problem are called local methods, in which 
an a priori knowledge of the location of the eigenvalues is necessary. Since local 
methods are iterative techniques, the convergence of the process and its speed 
depends on how well an initial guess is made, so that one is forced to come up 
with a good initial guess. In the past, information for constructing a good initial 
guess has been obtained either from known existing solutions or generated by 
techniques such as the variational method of Lee and Reynolds [l]. It is believed 
that the present technique may also provide good estimates for the location of 
eigenvalues in the desired domain of the eigenvalue plane for use in local methods 

Controversy still remains relative to the nature of the spectrum of eigenvalues 
of the linear stability problem of many flows profiles. The discussion arises as to 
whether the spectrum is infinite or finite for some flows and whether there exist 
any unstable modes for other types of flows. The present method could be used to 
answer some of these questions, if not in the whole of the complex plane, then at 
least for a certain finite portion of the plane. The theoretical background necessary 
for the development of the method is presented in the next section. The application 
of the method to the plane Poiseuille flow is illustrated in the section after next, 
and a general discussion of the results is given in the last section. 

THEORETICAL BACKGROUND 

Most linearized problems of mathematical physics are usually reduced to 
eigenvalue problems for their solution. Such problems are slightly more difficult 
to solve than regular boundary value problems because in seeking solutions of 
such problems, the eigenvalues as well as the eigenfunctions must be determined. 
In some cases a knowledge of the eigenvalues alone provides a good deal of insight 
into the problem and so merits their determination. When the coefficients of the 
differential operator are variables, most often a numerical procedure is the only 
recourse to its solution. In what follows we present such a procedure. 

Consider the eigenvalue problem 

L,(u) t XL,(u) = 0, 

where L,(U) and L,(U) are linear differential operators of the form 

(14 

L(u) = p,,(x) D”u + pi(x) D”-ltl + ... + p,(x)u. 
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h in (1 a) is a complex eigenvalue and u is a complex function of the real variable x. 
Also in the above, the coefficients plc(x) possess continuous derivatives up to 
order IZ on the interval [a, b] and D denotes differentiation with respect to x. Let 
the differential equation (la) be subject to the following boundary conditions: 

U,(u) = 0, (i = l,..., n) (lb) 

which are specified on both ends of the interval [a, b]. In the above, U,(U) are the 
homogeneous linear forms in the 2n quantities: 

u(4 Du(u),..., D’%(a), 

u(b), Du(b),..., D’%(b). 

Let us define the determinant d(h) by: 

[ 

w4 . . . GGJ 
A(h) = det ! 

U&l) ..* 

where u1 , u2 ,..., U, is a fundamental system of Cauchy solutions of (la), collec- 
tively satisfying linearly independent sets of initial conditions at x = a. For the 
case where the coefficients of the differential operators, namely p,(x), and the 
boundary conditions U,(U) are independent of the eigenvalue h, the following 
theorem can be invoked (see Naimark [2]): The eigenvalues of the operator equa- 
tion (la) together with the boundary conditions (1 b) are the zeroes of the function 
A(X). Zf A(h) vanishes identically, then any number h is an eigenvalue of problem (1). 
Zf, however, A(X) is not identically zero, problem (1) has at most denumerably many 
eigenvalues, and the eigenvalues have no jinite limit point. 

It can also be shown that if the operators L, and L, are not singular, then A(X) 
is an integral analytic function of X. 

By using the above theorem, it is evident that to determine the eigenvalues of 
problem (l), one only needs to locate the zeroes of the function A(h). In this work 
the interest lies in locating the eigenvalues of problem (1) within a finite region 
of the h plane; therefore, in what follows we will consider only the zeroes of A(h) 
within a bounded region of the h plane. Since A(X) is a complex function of the 
complex number h, the zeroes of A(X) can be determined with the aid of the fol- 
lowing theorem (see Goodstein [3]): Zf y is a regular curve in a simply connected 
open set not passing through any zero or pole of a meromorphic function A(h) in the 
set, the integral 

1 _ j &!‘(h)& 
27ri y A(h) (3) 
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is equal to the excess of the number of zeroes over the number of poles of A(h) 
inside y (a pole or zero of order k counting as k poles or zeroes, respectively). The 
prime in (3) denotes differentiation with respect to h. 

As pointed out earlier, d(h) is an analytic function of h; therefore, within any 
closed region in the X plane there are no poles and, hence, (3) could be written as 

A’(3 _I_ 
21i y d(h) dh = M’ s (4) 

where M is the number of zeroes within the curve y. 
The above theorem admits a simple generalization. As before, let A(X) be 

analytic inside and on y and let w(X) be also analytic inside and on y; then 

$#- dA = f q+(a,), 
r=1 

where the sum is taken over the zeroes of A(X) and qT is the order of the zeroes, a,. 
Expression (5) will be used in the next section for locating the position of the 
eigenvalues inside the curve y. 

THE ORR-SOMMERFELD EQUATION 

Formulation of the Problem 

To clarify the method outlined in the previous section and to facilitate an 
example, the eigenvalue spectrum of the Orr-Sommerfeld equation is investigated 
here. This equation describes the stability of two-dimensional, incompressible 
parallel flows with regard to infinitesimal disturbances. It takes the following 
form (see Lin [4]): 

(02 - (Y~)~ 4 = icllR{(u - c)(D2 - c+$ - +D’uI, (6) 

where D denotes differentiation with respect to y, 01 is the disturbance wave number, 
c its speed, and R is the flow Reynolds number. In Eq. (6), u is the undisturbed 
laminar profile, which for the plane Poiseuille flow is a quadratic function of y; 
i.e., u = 1 - y2. The usual boundary conditions for Eq. (6) are 

Ktl> = 0 = D&&l). (7) 

However, Eq. (6) is symmetrical in y, hence it is sufficient to consider only odd 
or even solutions to the eigenvalue problem comprised of (6) and (7). Thus, 
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Eq. (6) could be solved for half the range, [0, 11, by replacing the conditions given 
in (7) with the following ones: 

D&O) = 03+(o) = 0 for even solution 
I&O) = 02&O) = 0 for odd solution (8) 
(b(I) = D&l) = 0 

From the two choices given in (8), the boundary condition appropriate to the 
even solution is the one chosen for the discussion below because the even solution 
is the only one containing an unstable mode. 

Rewriting Eq. (6) in operator form yields 

where 
L, = {(D2 - a”)” - iaR[u(D2 - a”) - D2u]}, 

L, = iaR(D2 - a2). 
(JO) 

The eigenvalue here is the wave speed c, which is a complex number; i.e., 
c = c, + ici (from this point onward c will replace X of the previous section). 
The boundary conditions could also be rewritten in the form of the previous 
section; i.e., 

U, = D+(O) = 0, 

U, = D”+(O) = 0, 

u, = l$(l) = 0, 
(11) 

U, = D+(l) = 0. 

Based on these boundary conditions, the characteristic determinant d(h) defined 
in (2) will then take the form 

W(O) Db2(0) D&(O) Dq$(O) 

f(c) = det D”ddO> D342(0) D3+3(0) D3+JO) 
dSJ) d2U) $3(l) Ml> 

D&(l) &42(l> D+,(l) Dy$(l) I W) 

Since the boundary conditions, (I 0), are separable with two of the conditions 
applying at y = I and the remaining two at y = 0, the order of the characteristic 
determinant, (12), can be reduced with great saving of labor by solving an initial 
value problem defined by augmenting the given conditions at y = 0 by two further 
sets of two linearly independent conditions at that point. When the resulting 
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fundamental solutions are C$~ and & (where & = { & , D& , D2& , D”c$~}), (12) 
is replaced by the characteristic determinantal equation expressing the compatibility 
of a nontrivial combination of these solutions and their derivatives with the given 
boundary conditions at y = 1; namely 

AU> $M> 
‘(‘) = det [D&(l) D+,(l) 1 (13) 

Numericcd Details 

To locate the zeroes off(c)ins a prescribed domain in the c-plane, a numerical 
method developed by Delves and Lyness [5] was used. The method is only sketched 
here, and for details the reader is advised to consult the reference. First, the 
number of zeroes inside the specified region is determined through an approxima- 
tion to the contour integral, (4) by a suitable quadrature formula (the formula 
suggested in [5] was used here). In the present investigation the contour of integra- 
tion, y, was taken to be a circle following Delves and Lyness [5]. Once the number 
of zeroes inside y, say M, was determined, then their location was found in the 
second step. Letting the function w(h) in (5) take successively the values 
c, c2, c3,..., cJcf, the various power sums of the zeroes were determined by per- 
forming the following A4 contour integrations: 

M 

Sl = C Cj = 
.c 

,f’o, 

j=l Y f(c) ’ 

M 

sg = c cj2 = 
i 

&2 f&) dc 

i=l ‘Y f(c) ’ (14) 

sM = -f cjM = j” cMf$ &, 
j=l Y 

where cj are all the zeroes off(c) inside y. Again, the values of the contour integrals 
in (14) were obtained through the use of a suitable quadrature formula. 

Using the numbers s1 , s2 ,..., s,,,, , a polynomial P(c) of degree M could be 
constructed whose zeroes coincide with the zeroes of f(c). For the construction 
of such a polynomial, Newton’s formula is used in which the coefficients of the 
polynomial P(c) are evaluated from the power sums of the roots of the polynomial. 
Once the equivalent polynomial P(c) is constructed, then any polynomial root 
finder could be employed to extract the zeroes of P(c). The zeroes of f(c) are 
coincident with the roots of P(c). The polynomial root finder subroutine used in 
the present investigation utilizes the quadratic method. It should be mentioned 

@I/20/2-7 
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here that the numerical technique for finding the zeroes of a function described 
above is capable of determining multiple zeroes of the function if any exist. 
However, multiple zeroes were not found in the present problem within the domain 
of search. 

Examination of the quadrature expressions in (4) and (5) reveals that the evalua- 
tion of the derivative with respect to c of the secular determinant is necessary. 
This derivative is obtained by the usual rule of determinant differentiation which 
requires the derivative of each element of (13) with respect to c evaluated at y = 1. 
To achieve this, two more initial value problems are integrated from 0 to 1 whose 
governing equations are 

L, ($&) + CL, ($$) + L,(&) = 0 (i = I>21 

In Eq. (15) L, and Lz are the differential operators defined in (10). Note that 
since f is an analytic function of c, then the derivative is taken with respect to 
either c, or ci . The initial value problems defined in Eq. (15) are then solved 
subject to the following homogeneous initial conditions: 

Hence, for the complete solution of the problem, the linearly independent solu- 
tions & and 8, are augmented by two further solutions for &&/ac and a$,/&. 

The Orr-Sommerfeld equation (6) presents a problem when it is integrated 
numerically. The difficulty is due to the fact that some of the coefficients are 
widely separated. This is borne out when it is observed that the wave number, 01, 
is of order one while the Reynolds number R is of order lo3 or more. Since in the 
numerical integration of this equation one starts with linearly independent (orthog- 
onal) initial vectors, because of the wide separation of the coefficients these 
vectors become increasingly parallel as the integration proceeds to the final point, 
resulting in their being linearly dependent. 

Many methods have been devised to overcome this situation, and, to the 
author’s knowledge, they are all implementations of one basic idea. Since the 
initial vectors were orthogonal, it is necessary to ensure that these vectors remain 
orthogonal throughout the range of integration. This is achieved by reorthonor- 
malizing the solution vectors at discrete points along the path of integration. 
Conte’s [6] method is followed in this work which consists of using the Gramm- 
Schmidt orthonormalization technique, and for details of the method the reader 
is advised to consult that reference. In the present work, however, it is also neces- 
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sary to orthonormalize the solution vectors for $r/& and @Jac; and for that 
end the same orthonormalization transformation is used as the one for the solution 
vectors of C& and C& . 

RESULTS AND DISCUSSION 

Since the Orr-Sommerfeld equation for the plane Poiseuille flow has received 
much attention by workers in both analytical and numerical methods, it is consid- 
ered a good example for discussing the merits of the present technique. Only 
recently has any attempt been undertaken to tabulate the eigenvalue spectrum 
of Eq. (6). Specifically, there exist two such tabulations in the open literature. The 
first is by Orszag [7], who tabulated 17 symmetrical and 15 antisymmetrical 
eigenmodes of Eq. (6) for 01 = 1 and R = 10,000. His method, however, is not 
designed to search a specific portion of the eigenvalue plane, but the eigenmodes 
obtained are those of a transformed algebraic eigenvalue problem. The second is 
by Mack [8]. Employing a different search scheme from the present one, he 
tabulated the 32 known symmetric eigenmodes (for the same problem as that of 
Orszag’s) that lie in the rectangle 0 < c, < 1.0, - 1.1 < ci < 0, of the complex 
c-plane (the first 17 eigenvalues are those computed by Orszag). The results of 
the present scheme are compared with the latter tabulation. 

As was shown earlier, for each point evaluation of the contour integral, two 
solutions of Eq. (6) and two of Eq. (15) are required. Since both of these equations 
are fourth order, they are solved as a system of four first-order equations; therefore, 
in all a total of 16 complex or 32 real equations are integrated forward over the 
interval [0, 11. The initial value integrators commonly used in such cases are of 
the Runge-Kutta type with either a fixed or variable step size. However, both 
Eq. (6) and Eq. (15) are special in that they could be reduced to a system of two 
second-order equations which do not contain the first derivative explicitly. Runge- 
Kutta-NystrGm formulas, developed by Fehlberg [9], for integrating such systems 
of second-order differential equations were used in the present analysis. Thus, 
instead of integrating 32 real equations, only 16 real equations are integrated, 
resulting in a great saving of the computation time. The specific formulas used 
here are those of a seventh-order Runge-Kutta-Nystrom with a fixed step size 
of 0.05. 

The search procedure employed in this example is the following. The region 
desired to be searched (for the present problem the rectangle 0 < c, < I .O and 
- 1.1 < ci < 0) was spanned by circles of radius 0.071 as shown in Fig. 1. Then 
using the technique outlined in the previous section, each circle was searched in 
turn for eigenvalues. Although it is desirable to span the whole domain of interest 
by one circle, it was found that there exists an upper limit on the size of the search 
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FIG. 1. A section of the c-plane showing the method of search for the eigenvalues. This 
section is spanned by six circles containing modes 5-13 and 15. 

contour. It is observed that whenever the radius of the circle in question was 
larger than a specific value, the quadrature formula failed to converge (for the 
present problem this value was 0.1). This failure is primarily caused by the problem 
of separation of coefficients of Eq. (6) and not by any property of the quadrature 
formulas themselves. 

All of the eigenvalues found in this region are indicated in Fig. 2 and listed in 
Table I. (The eigenvalues are numbered in ascending order according to their 
magnitude in the lower half plane.) In Table 1, I c I is the magnitude of the eigen- 
value; c, and ci are its real and imaginary parts, while m is the number of function 
evaluations used in the quadrature formulas. In the sixth column, the percentage 

-0.6 
t 

*1* 
0 23x 

0.2 0.4 0.6 0.8 0.9 

FIG. 2. The rectangle in the lower half of the c-plane which is searched for the Orr-Sommerfeld 
problem of the plane Poiseuille flow for 01 = 1.0 and R = 10,000. All the stable modes for the 
even solution are shown in the rectangle 0 s c, s 1.0; - 1.1 < ci < 0. 
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TABLE I” 

01 0.26372 0.19*** -0.182** 512 

02 0.37065 0.34*** -0.1245* 64 

03 0.43912 0.3685 * -0.2388* 32 

04 0.51875 0.47490 -0.20873 64 

05 0.58757 0.51292 -0.28663 128 

06 0.64513 0.587** -0.26716 128 

07 0.71440 0.63610 -0.32519 128 

08 0.74895 0.6828* -0.30761 128 

09 0.75979 0.677** -0.34373 128 

IO 0.76502 0.70887 -0.2876* 256 

11 0.77906 0.67541 -0.38983 128 

12 0.78246 0.73812 -0.2596* 256 

13 0.8007 1 0.76649 -0.23159 256 

14 0.80196 0.6**** -0.43*** 128 

15 0.82047 0.79482 -0.20353 256 

16 0.82798 0.67232 -0.48326 128 

17 0.84164 0.82314 -0.17548 128 

18 0.85703 0.67159 -0.53241 128 

19 0.86412 0.85145 -0.14740 256 

20 0.88782 0.87976 -0.11937 256 

21 0.88905 0.67097 -0.58327 128 

22 0.91264 0.90*** -0.09*** 128 

23 0.92402 0.67043 -0.63588 128 

24 0.98348 0.93*** -0.06*** 128 

25 0.96193 0.66997 -0.69025 128 

26 0.96528 0.96*** -0.03*** 128 

27 1.0027 0.6**** -0.74*** 128 

28 1.0464 0.66923 -0.80439 128 

29 1.0928 0.66894 -0.86418 128 

30 1.1420 0.66868 -0.92582 64 

31 1.1940 0.66846 -0.98932 64 

32 1.2486 0.66826 -1.05468 256 

Erroti 
- 

2.1 E-03 

1.0 E-03 

3.4 E-05 

0.0 

0.0 

1.3 E-04 

0.0 

8.2 E-06 

5.7 E-05 

9.1 E-06 

0.0 

1.3 E-05 

0.0 

9.1 E-03 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

9.3 E-04 

0.0 

2.0 E-03 

0.0 

1.0 E-03 
4.2 E-04 

0.0 

0.0 

0.0 

0.0 
0.0 

“Eigenvalues of Eq. 6 with a = 1.0 and R = 104. 
’ Error = I c,,I. 1~1 - c I / I cref. P,I I. 
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error between Ma&s and the present calculation is indicated. The convergence 
criterion for the evaluations of Eqs. (4) and (5) was that whenever the difference 
between successive approximations of the quadrature values was less than 1 per- 
cent, these values were considered converged. As is seen in Table J, this criterion 
is good enough to give up to 5-digit accuracy for many of the eigenvalues. The 
asterisk in some of these numbers indicates the specific digit that did not agree 
with the known accurate values (Mack has tabulated the eigenvalues up to 5 digits 
only). This apparent discrepancy is not as bad as it seems because, although the 
digits differed, the magnitude of the eigenvalues, c, was less than 1 percent of the 
known accurate values. 

All of the computations were performed on the IBM 360/65 computer in double 
precision arithmetic whenever possible. Since the time required for each function 
evaluation is considerable (for each such evaluation the integration of 16 differential 
equations over the interval [0, l] was necessary), the computation time for each 
eigenvalue determination is directly proportional to the value of m. As is shown 
in Table I, for the majority of eigenvalues, 128 or less function evaluations were 
necessary. The time required for 128 such evaluations was about 3 minutes. Some 
difficulties were encountered, however, in the vicinity of the origin of c-plane, 
resulting in poor convergence; e.g., 512 function evaluations were necessary for 
mode 1. This difficulty is, again, due to the wide separation of the coefficients 
of Eq. (6) which causes considerable growth of the solution of the differential 
equations even with many orthonormalizations. 

A word of caution is in order here; although the method works quite well in 
locating the eigenvalues, the eigenfunctions are not determined. Hence, a local 
method together with this method is necessary for both the determination of the 
eigenvalues to a much higher accuracy (greater than 5 digits) and the determination 
of the eigenfunctions. It is also thought that the requirement of high accuracy 
from the present technique will be very taxing in computation time. This require- 
ment is unnecessary since local methods will converge much faster once the 
approximate locations of the eigenvalues are known. 

The following conclusions can be drawn from the above discussion concerning 
the method under investigation: 

(i) The present scheme could be used in searching a desired portion of the 
complex eigenvalue plane to locate the eigenvalues for a linear differential operator. 
The method is deterministic and does not require any given or a priori knowledge 
of the location of these eigenvalues. Furthermore, if high accuracy on the eigen- 
values is not desired, the present method is sufficient. 

(ii) When high accuracy on the eigenvalues is required, the present scheme 
can be used to search for the eigenvalues; and, once located, these values could 
be inputted into a local method which will converge fast enough to the desired 
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accuracy on the eigenvalues and eigenfunctions. Thus, this method could save 
considerable time by eliminating the trial and error and guesswork from the local 
methods. 
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